Sample Reports

Insulation Thickness Calculator Report

Insulation Thickness Calculator Report

Author: wisdomwaveshub.in • 8/28/2025, 8:44:01 AM • Units: SI • Standard: ASHRAE Handbook—Fundamentals (2021)
Segments
4
Total Heat Transfer
3027.49 W
Est. Cost
₹ 11181.32
Units
SI

Summary Table

SegmentTypeMaterialkho ThicknessLengthq′Surface TCost (₹)
Chilled Water (7→12 °C) — IndoorpipeElastomeric Foam (NBR) 0.04 W/m·K 8.00 W/m²·K 4.97 mm 10.00 m 17.45 W/m 19.10 °C 329.19
Brine (−5 °C) — IndoorpipeElastomeric Foam (NBR) 0.04 W/m·K 8.00 W/m²·K 20.00 mm 12.00 m 8.73 W/m 21.47 °C 1860.65
Hot Water (60 °C) — PlantroompipeMineral Wool 0.04 W/m·K 10.00 W/m²·K 7.63 mm 12.00 m 42.25 W/m 33.38 °C 719.50
Low-Pressure Steam (150 °C)pipeCalcium Silicate 0.06 W/m·K 12.00 W/m²·K 24.83 mm 20.00 m 112.06 W/m 42.76 °C 8271.97

Per-Segment Calculations (Step-by-Step)

Chilled Water (7→12 °C) — Indoor — Pipe • Elastomeric Foam (NBR)

1) Inputs

  • Tservice = 7.00 °C,  Tamb = 25.00 °C, RH = 60.00 %
  • Pipe OD = 60.30 mm
  • k = 0.035 W/m·K,  hconv,in = 8.00 W/m²·K,  ε = 0.90
  • Mode = Anti-condensation,  Margin = 2.00 °C

2) Film + Radiation

  • hrad = 4σ ε T³ = 5.41 W/m²·K
  • heff = hconv,in + hrad = 13.41 W/m²·K
  • ΔT = Tservice − Tamb = -18.00 K (Heat gain from ambient)
  • Tdew (Magnus) = 16.69 °C; Target surface (anti-cond) = 18.69 °C

3) Thickness Solve

  • Calculated tno SF = 4.52 mm; Safety factor = 1.10 → t = 4.97 mm

4) Thermal Resistances

  • r₁ = 0.030 m, r₂ = r₁ + t = 0.035 m
  • Rcond = ln(r₂/r₁)/(2πk) = 0.694 K·m/W
  • Rconv = 1/(heff·2πr₂) = 0.338 K·m/W

5) Results

  • q′ = ΔT / (Rcond + Rconv) = 17.45 W/m (Heat gain from ambient)
  • Surface temperature Ts = Tamb + q′·Rconv = 19.10 °C
  • Dew criterion: Ts ≥ Tdew + margin → PASS
  • Baseline (uninsulated) q′ ≈ 45.73 W/m

6) Costing

  • Outer perimeter = 0.22 m → Area = 2.21 m²
  • Rate (per m² @ 25 mm) = ₹ 650.00; Thickness factor = 0.20
  • Wastage = 5.00 %, Markup = 10.00 %
  • Material cost = ₹ 329.19

Brine (−5 °C) — Indoor — Pipe • Elastomeric Foam (NBR)

1) Inputs

  • Tservice = -5.00 °C,  Tamb = 24.00 °C, RH = 70.00 %
  • Pipe OD = 42.20 mm
  • k = 0.035 W/m·K,  hconv,in = 8.00 W/m²·K,  ε = 0.90
  • Mode = Anti-condensation,  Margin = 3.00 °C

2) Film + Radiation

  • hrad = 4σ ε T³ = 5.36 W/m²·K
  • heff = hconv,in + hrad = 13.36 W/m²·K
  • ΔT = Tservice − Tamb = -29.00 K (Heat gain from ambient)
  • Tdew (Magnus) = 18.19 °C; Target surface (anti-cond) = 21.19 °C

3) Thickness Solve

  • Calculated tno SF = 18.18 mm; Safety factor = 1.10 → t = 20.00 mm

4) Thermal Resistances

  • r₁ = 0.021 m, r₂ = r₁ + t = 0.041 m
  • Rcond = ln(r₂/r₁)/(2πk) = 3.031 K·m/W
  • Rconv = 1/(heff·2πr₂) = 0.290 K·m/W

5) Results

  • q′ = ΔT / (Rcond + Rconv) = 8.73 W/m (Heat gain from ambient)
  • Surface temperature Ts = Tamb + q′·Rconv = 21.47 °C
  • Dew criterion: Ts ≥ Tdew + margin → PASS
  • Baseline (uninsulated) q′ ≈ 51.35 W/m

6) Costing

  • Outer perimeter = 0.26 m → Area = 3.10 m²
  • Rate (per m² @ 25 mm) = ₹ 650.00; Thickness factor = 0.80
  • Wastage = 5.00 %, Markup = 10.00 %
  • Material cost = ₹ 1860.65

Hot Water (60 °C) — Plantroom — Pipe • Mineral Wool

1) Inputs

  • Tservice = 60.00 °C,  Tamb = 25.00 °C, RH = 50.00 %
  • Pipe OD = 88.90 mm
  • k = 0.040 W/m·K,  hconv,in = 10.00 W/m²·K,  ε = 0.90
  • Mode = Target q′,  q′target = 45.00 W/m

2) Film + Radiation

  • hrad = 4σ ε T³ = 5.41 W/m²·K
  • heff = hconv,in + hrad = 15.41 W/m²·K
  • ΔT = Tservice − Tamb = 35.00 K (Heat loss to ambient)
  • Tdew (Magnus) = 13.85 °C; Target surface (anti-cond) = 15.85 °C

3) Thickness Solve

  • Calculated tno SF = 6.93 mm; Safety factor = 1.10 → t = 7.63 mm

4) Thermal Resistances

  • r₁ = 0.044 m, r₂ = r₁ + t = 0.052 m
  • Rcond = ln(r₂/r₁)/(2πk) = 0.630 K·m/W
  • Rconv = 1/(heff·2πr₂) = 0.198 K·m/W

5) Results

  • q′ = ΔT / (Rcond + Rconv) = 42.25 W/m (Heat loss to ambient)
  • Surface temperature Ts = Tamb + q′·Rconv = 33.38 °C
  • Baseline (uninsulated) q′ ≈ 150.64 W/m

6) Costing

  • Outer perimeter = 0.33 m → Area = 3.93 m²
  • Rate (per m² @ 25 mm) = ₹ 520.00; Thickness factor = 0.31
  • Wastage = 5.00 %, Markup = 10.00 %
  • Material cost = ₹ 719.50

Low-Pressure Steam (150 °C) — Pipe • Calcium Silicate

1) Inputs

  • Tservice = 150.00 °C,  Tamb = 30.00 °C, RH = 50.00 %
  • Pipe OD = 114.30 mm
  • k = 0.060 W/m·K,  hconv,in = 12.00 W/m²·K,  ε = 0.80
  • Mode = Target q′,  q′target = 120.00 W/m

2) Film + Radiation

  • hrad = 4σ ε T³ = 5.06 W/m²·K
  • heff = hconv,in + hrad = 17.06 W/m²·K
  • ΔT = Tservice − Tamb = 120.00 K (Heat loss to ambient)
  • Tdew (Magnus) = 18.44 °C; Target surface (anti-cond) = 20.44 °C

3) Thickness Solve

  • Calculated tno SF = 22.57 mm; Safety factor = 1.10 → t = 24.83 mm

4) Thermal Resistances

  • r₁ = 0.057 m, r₂ = r₁ + t = 0.082 m
  • Rcond = ln(r₂/r₁)/(2πk) = 0.957 K·m/W
  • Rconv = 1/(heff·2πr₂) = 0.114 K·m/W

5) Results

  • q′ = ΔT / (Rcond + Rconv) = 112.06 W/m (Heat loss to ambient)
  • Surface temperature Ts = Tamb + q′·Rconv = 42.76 °C
  • Baseline (uninsulated) q′ ≈ 734.92 W/m

6) Costing

  • Outer perimeter = 0.52 m → Area = 10.30 m²
  • Rate (per m² @ 25 mm) = ₹ 700.00; Thickness factor = 0.99
  • Wastage = 5.00 %, Markup = 10.00 %
  • Material cost = ₹ 8271.97

Assumptions & Notes

  • Conduction through insulation + external film coefficient; internal film neglected (conservative for anti-condensation).
  • External h includes linearized radiation: hrad = 4σεT³ at ambient.
  • Material k are typical mid-temperature values; overwrite with project-specific datasheets.
  • Rates are per m² @ 25 mm; thickness scaling linear (approximation).
  • Selected Standard: ASHRAE Handbook—Fundamentals (2021). Film coefficients & material properties per ASHRAE Handbook—Fundamentals (2021); select values are typical (user must verify for your case).

Change Log

  1. 8/28/2025, 8:43:45 AM: Standard set to ASHRAE Handbook—Fundamentals (2021)
  2. 8/28/2025, 8:43:54 AM: Preset added: Chilled Water (7→12 °C) — Indoor
  3. 8/28/2025, 8:43:54 AM: Preset added: Brine (−5 °C) — Indoor
  4. 8/28/2025, 8:43:55 AM: Preset added: Hot Water (60 °C) — Plantroom
  5. 8/28/2025, 8:43:55 AM: Preset added: Low-Pressure Steam (150 °C)

HVAC Load Report

HVAC Load Report PRO

Standard: ASHRAE62.1 • Occupancy: Office space • Units: SI
Total Sensible
4.25 kW
Total Latent
2.16 kW
Total Cooling
6.74 kW
System Size
1.92 TR

Inputs

Indoor: 24°C, 50% RH • Outdoor: 35°C, 60% RH • Dew-point limit: 15°C
Ventilation: Rp=2.5, Ra=0.3, Ez=1.0, People (Pz)=10 (default density 5 / 100 m²)
SegmentAreaPeopleUwallWindows / SHGCEquip / Lights (W/m²)Ppl Sens/Lat (W/p)
Open Office30 m²51.88 / 0.5×0.810 / 870/60 W/p
Meeting Room20 m²61.84 / 0.45×0.810 / 870/60 W/p

Cost Summary (INR)

Equipment (per kW)0 INR
Ducts & Accessories0 INR
Labor/Install0 INR
Subtotal0 INR
Markup (10%)0 INR
Grand Total0 INR
Defaults are editable; adjust to current market.

Psychrometrics Snapshot

win=0.0093 kg/kg, hin=47.8 kJ/kg; wout=0.0214 kg/kg, hout=90.2 kJ/kg; ρout=1.131 kg/m³.

Segment Calculations (Step-by-Step)

Values derived via VRP (ASHRAE 62.1-2022 §6.2.1.1) and simple envelope/solar approximations. User must verify.

Segment: Open Office

Area: 30 m² • People: 5 • Uwall: 1.80 W/m²·K • Uwin: 3.00 W/m²·K • ΔT: 10.00 K • Windows: 8.00 m², SHGC 0.5 × shade 0.8
  1. Envelope conduction
    Qwall=U·A·ΔT = 1.80×40.00×10.00 = 720 W; Qwindow= 3.00×8.00×10.00 = 240 W.
  2. Solar gains
    Qsolar = A·SHGC·I·Fshade ≈ 8.00×0.5×500×0.2×0.8 = 320 W.
  3. Internal gains
    Equipment: 10.0 W/m² × 30.00 m² = 300 W; Lighting: 8.0 W/m² × 30.00 m² = 240 W.
  4. People gains
    Sensible: 70 W/p × 5 = 350 W; Latent: 60 W/p × 5 = 300 W.
  5. Ventilation (VRP)
    Vbz=RpPz+RaAz = 2.50×5 + 0.300×30.00 = 21.5 L/s. With Ez=1.0, Voz=Vbz/Ez= 21.5 L/s.
    ṁ = ρ·V̇ = 1.131 kg/m³ × 0.021 m³/s = 0.024 kg/s.
    hout−hin = 42.37 kJ/kg → Qvent=ṁ·Δh; split: Qs=ṁ·cp·ΔT = 0.269 kW, Ql=0.761 kW.
  6. Totals
    Sensible (kW) = (Envelope + Solar + Equip + Lights + PeopleS)/1000 + VentS = 2.439 kW.
    Latent (kW) = PeopleL/1000 + VentL = 1.061 kW.
    Segment total = 3.5 kW.

Segment: Meeting Room

Area: 20 m² • People: 6 • Uwall: 1.80 W/m²·K • Uwin: 3.00 W/m²·K • ΔT: 10.00 K • Windows: 4.00 m², SHGC 0.45 × shade 0.8
  1. Envelope conduction
    Qwall=U·A·ΔT = 1.80×28.00×10.00 = 504 W; Qwindow= 3.00×4.00×10.00 = 120 W.
  2. Solar gains
    Qsolar = A·SHGC·I·Fshade ≈ 4.00×0.45×500×0.2×0.8 = 144 W.
  3. Internal gains
    Equipment: 10.0 W/m² × 20.00 m² = 200 W; Lighting: 8.0 W/m² × 20.00 m² = 160 W.
  4. People gains
    Sensible: 70 W/p × 6 = 420 W; Latent: 60 W/p × 6 = 360 W.
  5. Ventilation (VRP)
    Vbz=RpPz+RaAz = 2.50×6 + 0.300×20.00 = 21 L/s. With Ez=1.0, Voz=Vbz/Ez= 21 L/s.
    ṁ = ρ·V̇ = 1.131 kg/m³ × 0.021 m³/s = 0.024 kg/s.
    hout−hin = 42.37 kJ/kg → Qvent=ṁ·Δh; split: Qs=ṁ·cp·ΔT = 0.263 kW, Ql=0.744 kW.
  6. Totals
    Sensible (kW) = (Envelope + Solar + Equip + Lights + PeopleS)/1000 + VentS = 1.811 kW.
    Latent (kW) = PeopleL/1000 + VentL = 1.104 kW.
    Segment total = 2.914 kW.

Methodology & Assumptions

  1. Ventilation per VRP: Vbz=Rp·Pz+Ra·Az; Voz=Vbz/Ez.
  2. Ventilation cooling: Q=ṁ(hout−hin), split into sensible (ṁ·cp·ΔT) and latent (remainder).
  3. Envelope conduction: Q=U·A·ΔT with user U-values; window solar is simplified using I≈500 W/m² and factor 0.2 (diversity/time-of-day).
  4. Internal gains: equipment & lighting by W/m²; people sensible/latent by activity.
  5. Totals include wastage/design allowance.
This report auto-converts all intermediate terms into SI units for clarity; final KPIs display in your selected unit system.