Insulation Thickness Calculator Report
Author: wisdomwaveshub.in • 8/28/2025, 8:44:01 AM • Units: SI • Standard: ASHRAE Handbook—Fundamentals (2021)
Segments
4Total Heat Transfer
3027.49 WEst. Cost
₹ 11181.32Units
SISummary Table
| Segment | Type | Material | k | ho | Thickness | Length | q′ | Surface T | Cost (₹) |
|---|---|---|---|---|---|---|---|---|---|
| Chilled Water (7→12 °C) — Indoor | pipe | Elastomeric Foam (NBR) | 0.04 W/m·K | 8.00 W/m²·K | 4.97 mm | 10.00 m | 17.45 W/m | 19.10 °C | 329.19 |
| Brine (−5 °C) — Indoor | pipe | Elastomeric Foam (NBR) | 0.04 W/m·K | 8.00 W/m²·K | 20.00 mm | 12.00 m | 8.73 W/m | 21.47 °C | 1860.65 |
| Hot Water (60 °C) — Plantroom | pipe | Mineral Wool | 0.04 W/m·K | 10.00 W/m²·K | 7.63 mm | 12.00 m | 42.25 W/m | 33.38 °C | 719.50 |
| Low-Pressure Steam (150 °C) | pipe | Calcium Silicate | 0.06 W/m·K | 12.00 W/m²·K | 24.83 mm | 20.00 m | 112.06 W/m | 42.76 °C | 8271.97 |
Per-Segment Calculations (Step-by-Step)
Chilled Water (7→12 °C) — Indoor — Pipe • Elastomeric Foam (NBR)
1) Inputs
- Tservice = 7.00 °C, Tamb = 25.00 °C, RH = 60.00 %
- Pipe OD = 60.30 mm
- k = 0.035 W/m·K, hconv,in = 8.00 W/m²·K, ε = 0.90
- Mode = Anti-condensation, Margin = 2.00 °C
2) Film + Radiation
- hrad = 4σ ε T³ = 5.41 W/m²·K
- heff = hconv,in + hrad = 13.41 W/m²·K
- ΔT = Tservice − Tamb = -18.00 K (Heat gain from ambient)
- Tdew (Magnus) = 16.69 °C; Target surface (anti-cond) = 18.69 °C
3) Thickness Solve
- Calculated tno SF = 4.52 mm; Safety factor = 1.10 → t = 4.97 mm
4) Thermal Resistances
- r₁ = 0.030 m, r₂ = r₁ + t = 0.035 m
- Rcond = ln(r₂/r₁)/(2πk) = 0.694 K·m/W
- Rconv = 1/(heff·2πr₂) = 0.338 K·m/W
5) Results
- q′ = ΔT / (Rcond + Rconv) = 17.45 W/m (Heat gain from ambient)
- Surface temperature Ts = Tamb + q′·Rconv = 19.10 °C
- Dew criterion: Ts ≥ Tdew + margin → PASS
- Baseline (uninsulated) q′ ≈ 45.73 W/m
6) Costing
- Outer perimeter = 0.22 m → Area = 2.21 m²
- Rate (per m² @ 25 mm) = ₹ 650.00; Thickness factor = 0.20
- Wastage = 5.00 %, Markup = 10.00 %
- Material cost = ₹ 329.19
Brine (−5 °C) — Indoor — Pipe • Elastomeric Foam (NBR)
1) Inputs
- Tservice = -5.00 °C, Tamb = 24.00 °C, RH = 70.00 %
- Pipe OD = 42.20 mm
- k = 0.035 W/m·K, hconv,in = 8.00 W/m²·K, ε = 0.90
- Mode = Anti-condensation, Margin = 3.00 °C
2) Film + Radiation
- hrad = 4σ ε T³ = 5.36 W/m²·K
- heff = hconv,in + hrad = 13.36 W/m²·K
- ΔT = Tservice − Tamb = -29.00 K (Heat gain from ambient)
- Tdew (Magnus) = 18.19 °C; Target surface (anti-cond) = 21.19 °C
3) Thickness Solve
- Calculated tno SF = 18.18 mm; Safety factor = 1.10 → t = 20.00 mm
4) Thermal Resistances
- r₁ = 0.021 m, r₂ = r₁ + t = 0.041 m
- Rcond = ln(r₂/r₁)/(2πk) = 3.031 K·m/W
- Rconv = 1/(heff·2πr₂) = 0.290 K·m/W
5) Results
- q′ = ΔT / (Rcond + Rconv) = 8.73 W/m (Heat gain from ambient)
- Surface temperature Ts = Tamb + q′·Rconv = 21.47 °C
- Dew criterion: Ts ≥ Tdew + margin → PASS
- Baseline (uninsulated) q′ ≈ 51.35 W/m
6) Costing
- Outer perimeter = 0.26 m → Area = 3.10 m²
- Rate (per m² @ 25 mm) = ₹ 650.00; Thickness factor = 0.80
- Wastage = 5.00 %, Markup = 10.00 %
- Material cost = ₹ 1860.65
Hot Water (60 °C) — Plantroom — Pipe • Mineral Wool
1) Inputs
- Tservice = 60.00 °C, Tamb = 25.00 °C, RH = 50.00 %
- Pipe OD = 88.90 mm
- k = 0.040 W/m·K, hconv,in = 10.00 W/m²·K, ε = 0.90
- Mode = Target q′, q′target = 45.00 W/m
2) Film + Radiation
- hrad = 4σ ε T³ = 5.41 W/m²·K
- heff = hconv,in + hrad = 15.41 W/m²·K
- ΔT = Tservice − Tamb = 35.00 K (Heat loss to ambient)
- Tdew (Magnus) = 13.85 °C; Target surface (anti-cond) = 15.85 °C
3) Thickness Solve
- Calculated tno SF = 6.93 mm; Safety factor = 1.10 → t = 7.63 mm
4) Thermal Resistances
- r₁ = 0.044 m, r₂ = r₁ + t = 0.052 m
- Rcond = ln(r₂/r₁)/(2πk) = 0.630 K·m/W
- Rconv = 1/(heff·2πr₂) = 0.198 K·m/W
5) Results
- q′ = ΔT / (Rcond + Rconv) = 42.25 W/m (Heat loss to ambient)
- Surface temperature Ts = Tamb + q′·Rconv = 33.38 °C
- Baseline (uninsulated) q′ ≈ 150.64 W/m
6) Costing
- Outer perimeter = 0.33 m → Area = 3.93 m²
- Rate (per m² @ 25 mm) = ₹ 520.00; Thickness factor = 0.31
- Wastage = 5.00 %, Markup = 10.00 %
- Material cost = ₹ 719.50
Low-Pressure Steam (150 °C) — Pipe • Calcium Silicate
1) Inputs
- Tservice = 150.00 °C, Tamb = 30.00 °C, RH = 50.00 %
- Pipe OD = 114.30 mm
- k = 0.060 W/m·K, hconv,in = 12.00 W/m²·K, ε = 0.80
- Mode = Target q′, q′target = 120.00 W/m
2) Film + Radiation
- hrad = 4σ ε T³ = 5.06 W/m²·K
- heff = hconv,in + hrad = 17.06 W/m²·K
- ΔT = Tservice − Tamb = 120.00 K (Heat loss to ambient)
- Tdew (Magnus) = 18.44 °C; Target surface (anti-cond) = 20.44 °C
3) Thickness Solve
- Calculated tno SF = 22.57 mm; Safety factor = 1.10 → t = 24.83 mm
4) Thermal Resistances
- r₁ = 0.057 m, r₂ = r₁ + t = 0.082 m
- Rcond = ln(r₂/r₁)/(2πk) = 0.957 K·m/W
- Rconv = 1/(heff·2πr₂) = 0.114 K·m/W
5) Results
- q′ = ΔT / (Rcond + Rconv) = 112.06 W/m (Heat loss to ambient)
- Surface temperature Ts = Tamb + q′·Rconv = 42.76 °C
- Baseline (uninsulated) q′ ≈ 734.92 W/m
6) Costing
- Outer perimeter = 0.52 m → Area = 10.30 m²
- Rate (per m² @ 25 mm) = ₹ 700.00; Thickness factor = 0.99
- Wastage = 5.00 %, Markup = 10.00 %
- Material cost = ₹ 8271.97
Assumptions & Notes
- Conduction through insulation + external film coefficient; internal film neglected (conservative for anti-condensation).
- External h includes linearized radiation: hrad = 4σεT³ at ambient.
- Material k are typical mid-temperature values; overwrite with project-specific datasheets.
- Rates are per m² @ 25 mm; thickness scaling linear (approximation).
- Selected Standard: ASHRAE Handbook—Fundamentals (2021). Film coefficients & material properties per ASHRAE Handbook—Fundamentals (2021); select values are typical (user must verify for your case).
Change Log
- 8/28/2025, 8:43:45 AM: Standard set to ASHRAE Handbook—Fundamentals (2021)
- 8/28/2025, 8:43:54 AM: Preset added: Chilled Water (7→12 °C) — Indoor
- 8/28/2025, 8:43:54 AM: Preset added: Brine (−5 °C) — Indoor
- 8/28/2025, 8:43:55 AM: Preset added: Hot Water (60 °C) — Plantroom
- 8/28/2025, 8:43:55 AM: Preset added: Low-Pressure Steam (150 °C)
HVAC Load Report PRO
Standard: ASHRAE62.1 • Occupancy: Office space • Units: SI
Total Sensible
4.25 kW
Total Latent
2.16 kW
Total Cooling
6.74 kW
System Size
1.92 TR
Inputs
Indoor: 24°C, 50% RH • Outdoor: 35°C, 60% RH • Dew-point limit: 15°C
Ventilation:
Ventilation:
Rp=2.5, Ra=0.3, Ez=1.0, People (Pz)=10 (default density 5 / 100 m²)| Segment | Area | People | Uwall | Windows / SHGC | Equip / Lights (W/m²) | Ppl Sens/Lat (W/p) |
|---|---|---|---|---|---|---|
| Open Office | 30 m² | 5 | 1.8 | 8 / 0.5×0.8 | 10 / 8 | 70/60 W/p |
| Meeting Room | 20 m² | 6 | 1.8 | 4 / 0.45×0.8 | 10 / 8 | 70/60 W/p |
Cost Summary (INR)
| Equipment (per kW) | 0 INR |
| Ducts & Accessories | 0 INR |
| Labor/Install | 0 INR |
| Subtotal | 0 INR |
| Markup (10%) | 0 INR |
| Grand Total | 0 INR |
|---|
Defaults are editable; adjust to current market.
Psychrometrics Snapshot
win=0.0093 kg/kg, hin=47.8 kJ/kg; wout=0.0214 kg/kg, hout=90.2 kJ/kg; ρout=1.131 kg/m³.
Segment Calculations (Step-by-Step)
Values derived via VRP (ASHRAE 62.1-2022 §6.2.1.1) and simple envelope/solar approximations. User must verify.
Segment: Open Office
Area: 30 m² • People: 5 • Uwall: 1.80 W/m²·K • Uwin: 3.00 W/m²·K • ΔT: 10.00 K • Windows: 8.00 m², SHGC 0.5 × shade 0.8
- Envelope conduction
Qwall=U·A·ΔT = 1.80×40.00×10.00 = 720 W; Qwindow= 3.00×8.00×10.00 = 240 W. - Solar gains
Qsolar = A·SHGC·I·Fshade ≈ 8.00×0.5×500×0.2×0.8 = 320 W. - Internal gains
Equipment: 10.0 W/m² × 30.00 m² = 300 W; Lighting: 8.0 W/m² × 30.00 m² = 240 W. - People gains
Sensible: 70 W/p × 5 = 350 W; Latent: 60 W/p × 5 = 300 W. - Ventilation (VRP)
Vbz=RpPz+RaAz = 2.50×5 + 0.300×30.00 = 21.5 L/s. With Ez=1.0, Voz=Vbz/Ez= 21.5 L/s.
ṁ = ρ·V̇ = 1.131 kg/m³ × 0.021 m³/s = 0.024 kg/s.
hout−hin = 42.37 kJ/kg → Qvent=ṁ·Δh; split: Qs=ṁ·cp·ΔT = 0.269 kW, Ql=0.761 kW. - Totals
Sensible (kW) = (Envelope + Solar + Equip + Lights + PeopleS)/1000 + VentS = 2.439 kW.
Latent (kW) = PeopleL/1000 + VentL = 1.061 kW.
Segment total = 3.5 kW.
Segment: Meeting Room
Area: 20 m² • People: 6 • Uwall: 1.80 W/m²·K • Uwin: 3.00 W/m²·K • ΔT: 10.00 K • Windows: 4.00 m², SHGC 0.45 × shade 0.8
- Envelope conduction
Qwall=U·A·ΔT = 1.80×28.00×10.00 = 504 W; Qwindow= 3.00×4.00×10.00 = 120 W. - Solar gains
Qsolar = A·SHGC·I·Fshade ≈ 4.00×0.45×500×0.2×0.8 = 144 W. - Internal gains
Equipment: 10.0 W/m² × 20.00 m² = 200 W; Lighting: 8.0 W/m² × 20.00 m² = 160 W. - People gains
Sensible: 70 W/p × 6 = 420 W; Latent: 60 W/p × 6 = 360 W. - Ventilation (VRP)
Vbz=RpPz+RaAz = 2.50×6 + 0.300×20.00 = 21 L/s. With Ez=1.0, Voz=Vbz/Ez= 21 L/s.
ṁ = ρ·V̇ = 1.131 kg/m³ × 0.021 m³/s = 0.024 kg/s.
hout−hin = 42.37 kJ/kg → Qvent=ṁ·Δh; split: Qs=ṁ·cp·ΔT = 0.263 kW, Ql=0.744 kW. - Totals
Sensible (kW) = (Envelope + Solar + Equip + Lights + PeopleS)/1000 + VentS = 1.811 kW.
Latent (kW) = PeopleL/1000 + VentL = 1.104 kW.
Segment total = 2.914 kW.
Methodology & Assumptions
- Ventilation per VRP: Vbz=Rp·Pz+Ra·Az; Voz=Vbz/Ez.
- Ventilation cooling: Q=ṁ(hout−hin), split into sensible (ṁ·cp·ΔT) and latent (remainder).
- Envelope conduction: Q=U·A·ΔT with user U-values; window solar is simplified using I≈500 W/m² and factor 0.2 (diversity/time-of-day).
- Internal gains: equipment & lighting by W/m²; people sensible/latent by activity.
- Totals include wastage/design allowance.
This report auto-converts all intermediate terms into SI units for clarity; final KPIs display in your selected unit system.